Internal forward models in the cerebellum: fMRI study on grip force and load force coupling.
نویسندگان
چکیده
Internal models are neural mechanisms that can mimic the input-output or output-input properties of the motor apparatus and external objects. Forward internal models predict sensory consequences from efference copies of motor commands. There is growing acceptance of the idea that forward models are important in sensorimotor integration as well as in higher cognitive function, but their anatomical loci and neural mechanisms are still largely unknown. Some of the most convincing evidence that the central nervous system (CNS) makes use of forward models in sensory motor control comes from studies on grip force-load force coupling. We first present a brief review of recent computational and behavioral studies that provide decisive evidence for the utilization of forward models in grip force-load force coupling tasks. Then, we used functional magnetic resonance imaging (fMRI) to measure the brain activity related to this coupling and demonstrate that the cerebellum is the most likely site for forward models to be stored.
منابع مشابه
Influences of load characteristics on impaired control of grip forces in patients with cerebellar damage.
Various studies showed a clear impairment of cerebellar patients to modulate grip force in anticipation of the loads resulting from movements with a grasped object. This failure corroborated the theory of internal feedforward models in the cerebellum. Cerebellar damage also impairs the coordination of multiple-joint movements and this has been related to deficient prediction and compensation of...
متن کاملSize-weight illusion, anticipation, and adaptation of fingertip forces in patients with cerebellar degeneration.
The smaller of two equally weighted objects is judged to be heavier when lifted (size-weight illusion [SWI]). In contrast, fingertip forces show an initial size effect but adapt to the true object weights within a few trials. The aim of this study was to investigate possible contributions of the cerebellum to SWI, force anticipation, and adaptation based on object size and weight. Eighteen part...
متن کاملHolding an object: neural activity associated with fingertip force adjustments to external perturbations.
When you hold an object, a sudden unexpected perturbation can threaten the stability of your grasp. In such situations grasp stability is maintained by fast reflexive-like grip-force responses triggered by the somatosensory feedback. Here we use functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms involved in the grip-force responses associated with unexpected incre...
متن کاملEvidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation.
Grasp stability during object manipulation is achieved by the grip forces applied normal to the grasped surfaces increasing and decreasing in phase with increases and decreases of destabilizing load forces applied tangential to the grasped surfaces. This force coordination requires that the CNS anticipates the grip forces that match the requirements imposed by the self-generated load forces. He...
متن کاملHand interactions in rapid grip force adjustments are independent of object dynamics.
Object manipulation requires rapid increase in grip force to prevent slippage when the load force of the object suddenly increases. Previous experiments have shown that grip force reactions interact between the hands when holding a single object. Here we test whether this interaction is modulated by the object dynamics experienced before the perturbation of the load force. We hypothesized that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Progress in brain research
دوره 142 شماره
صفحات -
تاریخ انتشار 2003